Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Jiang, Yu (Ed.)Abstract Copepods are among the most abundant organisms on the planet and play critical functions in aquatic ecosystems. Among copepods, populations of the Eurytemora affinis species complex are numerically dominant in many coastal habitats and serve as food sources for major fisheries. Intriguingly, certain populations possess the unusual capacity to invade novel salinities on rapid time scales. Despite their ecological importance, high-quality genomic resources have been absent for calanoid copepods, limiting our ability to comprehensively dissect the genome architecture underlying the highly invasive and adaptive capacity of certain populations. Here, we present the first chromosome-level genome of a calanoid copepod, from the Atlantic clade (Eurytemora carolleeae) of the E. affinis species complex. This genome was assembled using high-coverage PacBio long-read and Hi-C sequences of an inbred line, generated through 30 generations of full-sib mating. This genome, consisting of 529.3 Mb (contig N50 = 4.2 Mb, scaffold N50 = 140.6 Mb), was anchored onto four chromosomes. Genome annotation predicted 20,262 protein-coding genes, of which ion transport-related gene families were substantially expanded based on comparative analyses of 12 additional arthropod genomes. Also, we found genome-wide signatures of historical gene body methylation of the ion transport-related genes and the significant clustering of these genes on each chromosome. This genome represents one of the most contiguous copepod genomes to date and is among the highest quality marine invertebrate genomes. As such, this genome provides an invaluable resource to help yield fundamental insights into the ability of this copepod to adapt to rapidly changing environments.more » « less
- 
            While many freshwater invaders originate from saline habitats, the physiological mechanisms involved are poorly understood. We investigated the evolution of ion transporter Na+/K+-ATPase (NKA) protein expression between ancestral saline and freshwater invading populations of the copepod Eurytemora carolleae (Atlantic clade of the E. affinis complex). We compared in situ NKA expression between populations under common-garden conditions at three salinities in the maxillary glands. We found the evolution of reduced NKA expression in the freshwater population under freshwater conditions and reduced plasticity (canalization) across salinities, relative to the saline population. Our results support the hypothesis that maxillary glands are involved in ion reabsorption from excretory fluids at low-salinity conditions in the saline population. However, mechanisms of freshwater adaptation, such as increased ion uptake from the environment, might reduce the need for ion reabsorption in the freshwater population. These patterns of ion transporter expression contribute insights into the evolution of ionic regulation during habitat change.more » « less
- 
            While many freshwater invaders originate from saline habitats, the physiological mechanisms involved are poorly understood. We investigated the evolution of ion transporter Na+/K+-ATPase (NKA) protein expression between ancestral saline and freshwater invading populations of the copepod Eurytemora carolleae (Atlantic clade of the E. affinis complex). We compared in situ NKA expression between populations under common-garden conditions at three salinities in the maxillary glands. We found the evolution of reduced NKA expression in the freshwater population under freshwater conditions and reduced plasticity (canalization) across salinities, relative to the saline population. Our results support the hypothesis that maxillary glands are involved in ion reabsorption from excretory fluids at low-salinity conditions in the saline population. However, mechanisms of freshwater adaptation, such as increased ion uptake from the environment, might reduce the need for ion reabsorption in the freshwater population. These patterns of ion transporter expression contribute insights into the evolution of ionic regulation during habitat change.more » « less
- 
            With climate change, habitat salinity is shifting rapidly throughout the globe. In addition, many destructive freshwater invaders are recent immigrants from saline habitats. Recently, populations of the copepod Eurytemora affinis species complex have invaded freshwater habitats multiple times independently from saline estuaries on three continents. This review discusses features of this species complex that could enhance their evolutionary potential during rapid environmental change. Remarkably, across independent freshwater invasions, natural selection has repeatedly favored the same alleles far more than expected. This high degree of parallelism is surprising, given the expectation of nonparallel evolution for polygenic adaptation. Factors such as population structure and the genome architecture underlying critical traits under selection might help drive rapid adaptation and parallel evolution. Given the preponderance of saline-to-freshwater invasions and climate-induced salinity change, the principles found here could provide invaluable insights into mechanisms operating in other systems and the potential for adaptation in a changing planet.more » « less
- 
            Life in fresh water is osmotically and energetically challenging for living organisms, requiring increases in ion uptake from dilute environments. However, mechanisms of ion uptake from freshwater environments are still poorly understood and controversial, especially in arthropods, for which several hypothetical models have been proposed based on incomplete data. One compelling model involves the proton pump V-type H + ATPase (VHA), which energizes the apical membrane, enabling the uptake of Na + (and other cations) via an unknown Na + transporter (referred to as the “Wieczorek Exchanger” in insects). What evidence exists for this model of ion uptake and what is this mystery exchanger or channel that cooperates with VHA? We present results from studies that explore this question in crustaceans, insects, and teleost fish. We argue that the Na + /H + antiporter (NHA) is a likely candidate for the Wieczorek Exchanger in many crustaceans and insects; although, there is no evidence that this is the case for fish. NHA was discovered relatively recently in animals and its functions have not been well characterized. Teleost fish exhibit redundancy of Na + uptake pathways at the gill level, performed by different ion transporter paralogs in diverse cell types, apparently enabling tolerance of low environmental salinity and various pH levels. We argue that much more research is needed on overall mechanisms of ion uptake from freshwater habitats, especially on NHA and other potential Wieczorek Exchangers. Such insights gained would contribute greatly to our general understanding of ionic regulation in diverse species across habitats.more » « less
- 
            Salinity is a key factor that structures biodiversity on the planet. With anthropogenic change, such as climate change and species invasions, many populations are facing rapid and dramatic changes in salinity throughout the globe. Studies on the copepod Eurytemora affinis species complex have implicated ion transporter gene families as major loci contributing to salinity adaptation during freshwater invasions. Laboratory experiments and population genomic surveys of wild populations have revealed evolutionary shifts in genome-wide gene expression and parallel genomic signatures of natural selection during independent salinity transitions. Our results suggest that balancing selection in the native range and epistatic interactions among specific ion transporter paralogs could contribute to parallel freshwater adaptation. Overall, these studies provide unprecedented insights into evolutionary mechanisms underlying physiological adaptation during rapid salinity change.more » « less
- 
            Abstract The role of epistasis in driving adaptation has remained an unresolved problem dating back to the Evolutionary Synthesis. In particular, whether epistatic interactions among genes could promote parallel evolution remains unexplored. To address this problem, we employ an Evolve and Resequence (E&R) experiment, using the copepodEurytemora affinis, to elucidate the evolutionary genomic response to rapid salinity decline. Rapid declines in coastal salinity at high latitudes are a predicted consequence of global climate change. Based on time-resolved pooled whole-genome sequencing, we uncover a remarkably parallel, polygenic response across ten replicate selection lines, with 79.4% of selected alleles shared between lines by the tenth generation of natural selection. Using extensive computer simulations of our experiment conditions, we find that this polygenic parallelism is consistent with positive synergistic epistasis among alleles, far more so than other mechanisms tested. Our study provides experimental and theoretical support for a novel mechanism promoting repeatable polygenic adaptation, a phenomenon that may be common for selection on complex physiological traits.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available